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Abstract

Ultrashort-pulsed lasers have been attracting worldwide interest in science and engineering. Studying the thermal deformation
induced by ultrashort-pulsed lasers is important for preventing thermal damage. This article presents a finite difference method for study-
ing thermal deformation in a thin film exposed to ultrashort-pulsed lasers. The method is obtained based on the parabolic two-step
model. It accounts for the coupling effect between lattice temperature and strain rate, as well as for the hot-electron-blast effect in
momentum transfer. The method allows us to avoid non-physical oscillations in the solution as demonstrated by numerical examples.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Ultrafast lasers with pulse durations of the order of sub-
picoseconds to femtoseconds possess exclusive capabilities
in limiting the undesirable spread of the thermal process
zone in the heated sample [1]. The application of ultra-
short-pulsed lasers includes structural monitoring of thin
metal films [2,3], laser micromachining and patterning [4],
structural tailoring of microfilms [5], and laser synthesis
and processing in thin film deposition [6]. Recent applica-
tions of ultrashort-pulsed lasers have been in different dis-
ciplines such as physics, chemistry, biology, medicine, and
optical technology [7–10]. The non-contact nature of
femtosecond lasers has made them an ideal candidate
for precise thermal processing of functional nanophase
materials [1].

Success of high-energy ultrashort-pulsed lasers in real
applications relies on three factors [1]: (1) well character-
ized pulse width, intensity and experimental techniques;
(2) reliable microscale heat transfer models; and (3) preven-
tion of thermal damage. It should be pointed out here that
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ultrafast damage induced by sub-picosecond pulses is
intrinsically different from that induced by long-pulse or
continuous lasers. For the latter, laser damage is caused
by elevated temperatures resulting from the continuous
pumping of photon energy into the processed sample.
Therefore, the ‘‘damage threshold’’ in heating by long-
pulse lasers is often referred to as the laser intensity that
drives the heated spot to the melting temperature. Thermal
damage induced by ultrashort pulses in the picosecond
domain, on the other hand, occurs after the heating pulse
is over.

Up-to-date, there are many researchers studying heat
transfer models related to ultrashort-pulsed lasers [11–22].
However, only a few mathematical models for studying
thermal deformation induced by ultrashort-pulsed lasers
have been developed [1,23–25]. Tzou and his colleagues [1]
presented a one-dimensional model in a double-layered thin
film. The model was solved using a differential-difference
approach. Chen and his colleagues [23] considered a two-
dimensional axisymmetric cylindrical thin film and pro-
posed an explicit finite difference method by adding an
artificial viscosity term to eliminate numerical oscillations.
In this study, we consider a two-dimensional plain strain
thin film model in rectangular coordinates. The film is
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Fig. 1. Laser heating model.

Nomenclature

Ce0 electron heat capacity
Cl lattice heat capacity
G electron–lattice coupling factor
J laser fluence
K bulk modulus
Ke thermal conductivity
R surface reflectivity
Te electron temperature
Tl lattice temperature
t, tn time
tp laser pulse duration
u,v displacements in x and y directions, respectively
un

ij numerical solution of u(xi,yj, tn)
v1,v2 velocity components in x and y directions,

respectively
x,y Cartesian coordinates

xs optical penetration depth
ys spatial profile parameter
aT thermal expansion coefficient
Dt,Dx,Dy time increment and spatial step sizes, respec-

tively
D�t,dx finite difference operators
ex, ey normal strains in x and y directions, respectively
K electron-blast coefficient
cxy shear strain
k Lame’s coefficient
l Lame’s coefficient
q density
rx,ry normal stresses in x and y directions, respec-

tively
rxy shear stress
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exposed to ultrashort-pulsed lasers. An implicit finite differ-
ence scheme on a staggered grid for studying thermal defor-
mation induced by ultrashort-pulsed lasers is developed
based on the parabolic two-step heat transport equations.
It accounts for the coupling effect between lattice tempera-
ture and strain rate, as well as for the hot-electron-blast
effect in momentum transfer. The developed methodology
allows us to avoid non-physical oscillations in the solution
as demonstrated by a series of numerical experiments.

2. Mathematical model

Consider a two-dimensional thin film in rectangular coor-
dinates, which is exposed to ultrashort-pulsed lasers as
shown in Fig. 1. The governing equations for studying ther-
mal deformation in the thin film can be expressed as follows:
(1) Dynamic equations of motion [1,23,26]

q
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þ orxy
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þ 2KT e

oT e

ox
; ð1Þ
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; ð2Þ

where

rx ¼ kðex þ eyÞ þ 2lex � ð3kþ 2lÞaTðT l � T 0Þ; ð3Þ
ry ¼ kðex þ eyÞ þ 2ley � ð3kþ 2lÞaTðT l � T 0Þ; ð4Þ
rxy ¼ lcxy ; ð5Þ

ex ¼
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ox
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. ð6Þ

Here, u is the displacement in the thickness direction
(x-direction) and v is the displacement in length direction
(y-direction); ex and ey are the normal strains in the x

and y directions, respectively; cxy is the shear strain; rx

and ry are the normal stresses in the x and y directions,
respectively; rxy is the shear stress; Te and Tl are electron
and lattice temperatures, respectively; T0 is an initial tem-
perature; q is density; K is electron-blast coefficient;
k ¼ K � 2

3
l [27] and l are Lame’s coefficients; and aT is

the thermal expansion coefficient.
(2) Energy equations [1,23,28]
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where the heat source is given by

Q ¼ 0:94J
1� R
tpxs

exp � x
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Here, CeðT eÞ ¼ Ce0

T e

T 0

� �
is the electron heat capacity,

keðT e; T lÞ ¼ k0
T e

T l

� �
is the thermal conductivity, G is the

electron–lattice coupling factor, Cl is the lattice heat capac-
ities, respectively; Q is energy absorption rate; J is laser flu-
ence; R is surface reflectivity; tp is laser pulse duration; xs is
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optical penetration depth; ys is spatial profile parameter.
Eqs. (7) and (8) are often referred to as parabolic two-step
heat transport equations.

The boundary conditions are assumed to be

rx ¼ 0; rxy ¼ 0; at x ¼ 0; Lx; ð10Þ
ry ¼ 0; rxy ¼ 0; at y ¼ 0; Ly ; ð11Þ
oT e

o~n
¼ 0;

oT l

o~n
¼ 0; ð12Þ

where ~n is the unit outward normal vector on the bound-
ary. It should be pointed out that insulated boundaries
are imposed due to the assumption that there are no heat
losses from the film surfaces in the short time response.

The initial conditions are assumed to be

T e ¼ T l ¼ T 0; u ¼ v ¼ 0; ut ¼ vt ¼ 0; at t ¼ 0. ð13Þ
3. Finite difference method

In order to prevent the solution from oscillations, we
introduce two velocity components v1 and v2 into the model
and re-write the dynamic equations of motion, Eqs. (1)–(6),
as follows:

v1 ¼
ou
ot
; v2 ¼

ov
ot
; ð14Þ
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Fig. 2. A staggered mesh.
To develop a finite difference scheme, we first construct a
staggered grid as shown in Fig. 2, where v1 is placed at
(xi+1/2,yj), v2 is placed at (xi,yj+1/2), cxy and rxy are placed
at (xi+1/2,yj+1/2), while ex, ey, rx, ry, Te and Tl are at (xi,yj).
Here, i and j are indices with 1 6 i 6 Nx + 1 and
1 6 j 6 Ny + 1. We denote vn

1ðiþ 1=2; jÞ and vn
2ði; jþ 1=2Þ

as numerical approximations of v1((i + 1/2)Dx, jDy,nDt)
and v2(iDx, (j + 1/2)Dy,nDt), respectively, where Dt, Dx

and Dy are time increment and spatial step sizes, respec-
tively. Similar notations are used for other variables.
Furthermore, we introduce the finite difference operators,
D�t, dx and d2

x ; as follows:

D�tun
j ¼ un

j � un�1
j ; dxun

j ¼ un
jþ1=2 � un

j�1=2.

It should be pointed out that the staggered-grid method is
often employed in computational fluid dynamics to prevent
the solution from oscillations [29]. For example, if v1 and ex

in Eq. (17) are placed at a same location, employing a
central finite difference scheme may produce a velocity
component v1, a wave solution, implying oscillation.

We now develop a finite difference method for solving
the above governing equations. To this end, we first discret-
ize equations (15) and (16) using a backward finite differ-
ence scheme as follows:

q
1

Dt
D�tvnþ1

1 ðiþ 1=2; jÞ

¼ 1

Dx
dxr

nþ1
x ðiþ 1=2; jÞ þ 1

Dy
dyr

nþ1
xy ðiþ 1=2; jÞ

þ K
1

Dx
dxðT 2

eÞ
nþ1ðiþ 1=2; jÞ; ð18Þ

q
1

Dt
D�tvnþ1

2 ði; jþ 1=2Þ

¼ 1

Dx
dxr

nþ1
xy ði; jþ 1=2Þ þ 1

Dy
dyr

nþ1
y ði; jþ 1=2Þ

þ K
1

Dy
dyðT 2

eÞ
nþ1ði; jþ 1=2Þ; ð19Þ

where Eq. (17) is discretized using backward finite differ-
ences as

1
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and Eqs. (3)–(5) are discretized as

rnþ1
x ði; jÞ ¼ k½enþ1

x ði; jÞ þ enþ1
y ði; jÞ� þ 2lenþ1

x ði; jÞ
� ð3kþ 2lÞaT½T nþ1

l ði; jÞ � T 0�; ð23Þ
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rnþ1
y ði; jÞ ¼ k½enþ1

x ði; jÞ þ enþ1
y ði; jÞ� þ 2lenþ1

y ði; jÞ
� ð3kþ 2lÞaT½T nþ1

l ði; jÞ � T 0�; ð24Þ

rnþ1
xy ðiþ 1=2; jþ 1=2Þ ¼ lðcnþ1

xy ðiþ 1=2; jþ 1=2ÞÞ. ð25Þ

We then discretize equations (7) and (8) using the Crank–
Nicholson method as follows:

Ce0
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Table 1
Thermophysical properties

Properties Unit Value

q kg/m3 19,300
K J m�3 K�2 70
K Pa 217 · 109

l Pa 27 · 109

aT K�1 14.2 · 10�6

Ce0 J/(m3 K) 2.1 · 104

Cl J/(m3 K) 2.5 · 106

G W/(m3 K) 2.6 · 106

Ke W/(m K) 315
R 0.93
tp s 0.1 · 10�12

xs m 15.3 · 10�9

ys m 1.0 · 10�6

J J/m2 500

Fig. 3. Change in electron temperature at x = 0 and y = 0 versus time for
various meshes (80 · 40, 160 · 80, and 300 · 150).
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Fig. 4. Displacement (u) at x = 0 and y = 0 versus time for various meshes
(80 · 40, 160 · 80, and 300 · 150).

Fig. 5. Comparison of the present method with Chen et al.’s method in
[23] with regard to the normal stress (rx) at y = 0 lm at t = 10 ps.



Fig. 6. Electron temperature profiles at (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t = 1 ps, (d) t = 10 ps, and (e) t = 20 ps.
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and

Cl
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Finally, the displacements, u and v, are obtained using
the Euler backward scheme for Eq. (14) as follows:

D�tunþ1ðiþ 1=2; jÞ ¼ vnþ1
1 ðiþ 1=2; jÞ; ð28Þ

D�tvnþ1ði; jþ 1=2Þ ¼ vnþ1
2 ði; jþ 1=2Þ. ð29Þ

The boundary conditions, Eqs. (10)–(12), are discretized as
follows:

rn
xð1; jÞ ¼ 0; rn

xðN x þ 1; jÞ ¼ 0; 1 6 j 6 Ny þ 1; ð30aÞ
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1 6 j 6 N y ; ð30bÞ
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T n

eð1; jÞ ¼ T n
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eðN x þ 1; jÞ ¼ T n
eðNx; jÞ;

1 6 j 6 N y þ 1; ð32aÞ
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eði;N yÞ;
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l ð2; jÞ; T n
l ðN x þ 1; jÞ ¼ T n
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l ði;N yÞ;
1 6 i 6 Nx þ 1; ð33bÞ

for any time level n. The initial conditions are approxi-
mated as

u0ðiþ 1=2; jÞ ¼ 0; v0ði; jþ 1=2Þ ¼ 0; ð34aÞ
v0

1ðiþ 1=2; jÞ ¼ 0; v0
2ði; jþ 1=2Þ ¼ 0;

1 6 i 6 Nx; 1 6 j 6 N y ; ð34bÞ

T 0
eði; jÞ ¼ T 0

l ði; jÞ ¼ T 0;

1 6 i 6 Nx þ 1; 1 6 j 6 Ny þ 1; ð34cÞ

e0
xði; jÞ ¼ e0

yði; jÞ ¼ 0; ð34dÞ

r0
xði; jÞ ¼ r0

yði; jÞ ¼ 0; 1 6 i 6 N x þ 1; 1 6 j 6 Ny þ 1;

ð34eÞ
r0

xyðiþ 1=2; jþ 1=2Þ ¼ c0
xyðiþ 1=2; jþ 1=2Þ ¼ 0;

1 6 i 6 Nx; 1 6 j 6 N y . ð34fÞ
It can be seen that the truncation error of Eqs. (18) and
(19) is O(Dt + Dx2 + Dy2) and the truncation error of Eqs.
(26) and (27) is O(Dt2 + Dx2 + Dy2). It should be pointed
out that Eqs. (18) and (19) are nonlinear since the terms
dxðT 2

eÞ
nþ1ðiþ 1=2; jÞ and dyðT 2

eÞ
nþ1ði; jþ 1=2Þ are nonlinear.

Also, it can be seen that Eqs. (26) and (27) are nonlinear.
Therefore, the above scheme must be solved iteratively.
An iterative method for solving the above scheme at time
level n + 1 is developed as follows:

Step 1. Guess enþ1
x ; enþ1

y and cnþ1
xy by using the values of en

x ; e
n
y

and cn
xy , solve Eqs. (26) and (27) iteratively for T nþ1

e

and T nþ1
l .

Step 2. Solve for rnþ1
x , rnþ1

y , rnþ1
xy using Eqs. (23)–(25).

Step 3. Solve for vnþ1
1 and vnþ1

2 using Eqs. (18) and (19).
Step 4. Update enþ1

x , enþ1
y and cnþ1

xy using Eqs. (20)–(22).

Repeat the above steps until a convergent solution is
obtained.

Note that the present method does not introduce an arti-
ficial viscosity term into the dynamic equations of motion.
Recall that Chen et al.’s method [23] introduces an artificial
viscosity term,
P ¼ xLqV sDxðtrDÞ � qðxQDxÞ2jtrDjðtrDÞ; ð35Þ
into the dynamical equations of motion

q
o2u
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¼ orx
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þ orxy

oy
þ 2KT e

oT e

ox
þ oP

ox
ð36Þ

and

q
o2v
ot2
¼ orxy

ox
þ ory

oy
þ 2KT e

oT e

oy
þ oP

oy
; ð37Þ

in order to suppress oscillations in the thermal stress wave.
Here, Dx is a characteristic dimension, xL and xQ are con-
stants, and the velocity gradients term trD is defined as

trD ¼ o
2u

oxot
þ o

2v
oyot

. ð38Þ

In the next section, we provide comparisons between the
results obtained with Chen et al.’s procedure and the meth-
odology proposed in this paper.

4. Numerical Example

To test the applicability of the developed numerical
scheme, we investigated the temperature rise and deforma-
tion in a single-layered thin film with the dimensions
0.1 lm (thickness) · 1 lm (length), as shown in Fig. 1.
The thermophysical properties for gold are listed in Table
1 [1,23,31]. Three meshes of 80 · 40, 160 · 80, 300 · 150
were chosen in order to test the convergence of the scheme.
The time increment is 0.005 ps. The laser fluence was
chosen to be J = 500 J/m2. The initial temperature T0 is
300 K.

Fig. 3 shows the change in electron temperature
(DTe/(DTe)max) at x = 0 and y = 0. The maximum temper-
ature rise of Te (i.e., (DTe)max) is about 3791 K, which is
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very close to that obtained by Qiu and Tien [30]. Fig. 4
shows the displacement (u) at x = 0 and y = 0 versus time.
It can be seen from both figures that the solutions are con-
vergent as the mesh is getting finer.
Fig. 7. Lattice temperature profiles at (a) t = 0.25 ps, (b)
Figs. 5–11 were plotted based on the results obtained in
a mesh of 160 · 80 and Dt = 0.005 ps. Fig. 5 presents the
results obtained with Chen et al.’s method [23] and the
methodology developed in the present paper. In particular,
t = 0.5 ps, (c) t = 1 ps, (d) t = 10 ps, and (e) t = 20 ps.
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we plotted the distribution of thermal stress rx at y = 0 lm
when time t = 10 ps. The artificial viscosity approach by
Chen et al. tends to overestimate the solution, as confirmed
by Fig. 5. Furthermore, oscillations of the solution around
two peaks, typical for this approach, are removed when the
methodology developed here is applied. We also compared
Fig. 8. Displacement (u) profiles at (a) t = 1 ps, (b) t =
the computational cost between the present method and
Chen et al.’s method. The present method took about
38 h of CPU time on a Dell computer (with Intel(R)
Pentium(R) 4 CPU 1.60 GHz) to obtain the result at
t = 10 ps while Chen et al.’s method took about 10 h. Obvi-
ously, the present method costs more computational time.
5 ps, (c) t = 10 ps, (d) t = 15 ps, and (e) t = 20 ps.
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This is because the present method is an implicit scheme
and Chen et al.’s method is an explicit scheme.

Figs. 6 and 7 show respectively electron temperature and
lattice temperature profiles at different times (a) t = 0.25 ps,
(b) t = 0.5 ps, (c) t = 1 ps, (d) t = 10 ps, and (e) t = 20 ps. It
can be seen that the electron temperature rises to its max-
imum at the beginning and then decreases to an uniform
Fig. 9. Displacement (v) profiles at (a) t = 1 ps, (b) t =
distribution at t = 20 ps while the lattice temperature rises
gradually with time. Fig. 8 shows displacement u (thickness
direction) profiles at different times (a) t = 1 ps, (b)
t = 5 ps, (c) t = 10 ps, (d) t = 15 ps, and (e) t = 20 ps.
Fig. 9 shows displacement v (length direction) profiles at
different times (a) t = 1 ps, (b) t = 5 ps, (c) t = 10 ps, (d)
t = 15 ps, and (e) t = 20 ps. Fig. 10 shows normal stress
5 ps, (c) t = 10 ps, (d) t = 15 ps, and (e) t = 20 ps.
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rx (thickness direction) profiles at different times (a)
t = 1 ps, (b) t = 5 ps, (c) t = 10 ps, (d) t = 15 ps, and (e)
t = 20 ps. Fig. 11 shows normal stress ry (length direction)
profiles at different times (a) t = 1 ps, (b) t = 5 ps, (c)
t = 10 ps, (d) t = 15 ps, and (e) t = 20 ps. The analysis of
Fig. 10. Normal stress (rx) profiles at (a) t = 1 ps, (b) t
displacement and stress waves reveals the significance of
the hot-electron-blast effect on the ultrafast deformation
mainly along the thickness direction. Furthermore, the pro-
posed methodology allows us to obtain the solution free
from non-physical oscillations.
= 5 ps, (c) t = 10 ps, (d) t = 15 ps, and (e) t = 20 ps.



Fig. 11. Normal stress (ry) profiles at (a) t = 1 ps, (b) t = 5 ps, (c) t = 10 ps, (d) t = 15 ps, and (e) t = 20 ps.
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5. Conclusion

We have developed a finite difference method for study-
ing thermal deformation in a thin film exposed to ultra-
short-pulsed lasers. The method, based on the parabolic
two-step heat transport equations, accounts for the cou-
pling effect between lattice temperature and strain rate, as
well as for the hot-electron-blast effect in momentum
transfer. By replacing the displacement components in
the dynamic equations of motion using the velocity



H. Wang et al. / International Journal of Heat and Mass Transfer 49 (2006) 2712–2723 2723
components, and employing a staggered grid, we have
developed a numerical method that allows us to avoid
non-physical oscillations in the solution, as illustrated by
a series of numerical experiments.
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